

Citect for Windows

Driver Specification

Fidelix

 Driver Design Specification

Driver version history

Version Date Modified By Details
1.0.0.B1 2013-03-05 Tomas Rook Main development – no writes, no TimeTables
1.0.0.B2 2013-03-26 Tomas Rook Writes implemented (still no TimeTables)
1.0.0.0 2013-04-22 Tomas Rook TimeTables and Calendar implemented
1.0.0.1 2013-10-22 Tomas Rook Temporary WriteToLogFile -> not released
1.0.0.2 2013-10-25 Tomas Rook Increased max include 64 -> 256, changed

memset in init, increased MaxChannel 64 -> 256
-> not released

1.0.3.0 2015-03-30 Tomas Rook OID lookup changed to prevent variable mixup
between include projects, new BuildVariableMap
to work better in redundancy, PortFrom defaults
to port 1235 and TCP. XTA/XVA range fixup (did
not compile correct)

1.0.4.0 2015-03-31 Tomas Rook Removed IOServer compare stuff, added debug
for defined variables missing in the Fidelix de-
vice

1.0.4.1 2017-05-10 Tomas Rook Softwareprotection implemented

Driver documentation version history

Date Modified By Details
2013-03-05 Tomas Rook Preliminary
2013-03-26 Tomas Rook Statistics and parameters updated
2013-04-22 Tomas Rook Parameters and Fidelix.dbf updated
2015-03-30 Tomas Rook Parameters and Fidelix.dbf updated

fidelix_driver.doc 2

 Driver Design Specification

Contents

1. QA 5
1.1 Introduction 5

1.2 Procedure for generating a new driver 5

2. TARGET DEVICE(S) AND PROTOCOL 6
2.1 Introduction 6

2.2 Device Manufacturer 6

2.3 Device Definition 6

2.4 Communications Method 6

2.5 Communications/Hardware Configuration 6

2.6 Contacts 6

3. PROTOCOL REQUIREMENTS 7
3.1 Introduction 7

3.2 Pointlist 7

3.3 OID vs Index based adressing 7

3.4 FIDELIX.DBF 8

3.5 Supported variables/parameters 9

3.6 Address examples (OID and Index lookup) 11

3.7 Time channel addressing 13

4. USER INTERFACE 14
4.1 Introduction 14

4.2 Driver Name 14

4.3 Ports Form (TCPIP setup) 14
4.3.1 Baud Rate 14

4.3.2 Data Bits 14

4.3.3 Stop Bits 14

4.3.4 Parity 14

4.3.5 Special Opt 14

4.4 IO Devices Form 14
4.4.1 Protocol 14

4.4.2 Address 14

4.5 Pulldown lists Help 15

4.6 PROTDIR.DBF 15

4.7 Parameters and INI options 15
4.7.1 Standard Parameters 15

fidelix_driver.doc 3

 Driver Design Specification

4.7.2 Driver Specific Parameters 15

4.8 Debug Messages 16

4.9 Stats Special Counters 16

4.10 Hints and Tips 17

5. BASIC TESTING 18
5.1 Introduction 18

5.2 Procedure 18

6. PERFORMANCE TESTING 20
6.1 Introduction 20

6.2 Calculating the Blocking Constant – Not applicable 20

7. REFERENCES 21
7.1 References 21

fidelix_driver.doc 4

 Driver Design Specification

1. QA

1.1 Introduction

This document follows the development of the new driver. It serves as a functional specification,
design specification and test specification.

1.2 Procedure for generating a new driver

The following check list defines the QA steps for generating a new driver. This procedure must be
followed for drivers to be integrated into Citect.

 Description Person Date

1 This specification document is written. TR 13.03.05

2 Specification reviewed and accepted by R&D department. n/a

3 Driver coded. TR 13.03.05

4 Code and specification reviewed and accepted by R&D department. n/a

5 Testing with connection project, and performance test. TR 13.03.05

6 Driver integrated into Citect source and built. n/a

7 Documentation is written (HLP or MVB files) n/a

 At this checkpoint coding is done and the driver is available as a beta.

8a Full testing is carried out. TR 13.04.23

8b Performance testing is carried out. TR 13.04.23

8c Specification and documentation updated from testing/performance tests TR 13.04.23

 At this checkpoint the testing is complete.

9a Review for completeness by developer, tester, documentor and R&D staff n/a

9b Add driver to install disks n/a

9c Add driver to protocols database n/a

9d Support notified of new driver for training purposes n/a

10 Sales notified of new driver n/a

 The driver is now finished.

The hand over of a driver requires that all the above steps are completed and checked off.

fidelix_driver.doc 5

 Driver Design Specification

2. Target Device(s) and Protocol

2.1 Introduction

This section defines the types of I/O Devices that are targeted by this driver.

2.2 Device Manufacturer

Fidelix Sverige AB
Box 62
647 05 Åkers Styckebruk

2.3 Device Definition

Different model of devices, ex FX-2025

2.4 Communications Method

TCP/IP only.

2.5 Communications/Hardware Configuration

The driver connects to the Fidelix devices using TCP/IP and subscribe for tag updates.

 TCPIP



TCP/IP
Ethernet

Fidelix Fidelix Fidelix

2.6 Contacts

Driver Development TroSoft AB, Tomas Rook +46 8 532 57262
Project Management Fidelix Svenska AB, Antero Engberg +46 8 556 558 33

fidelix_driver.doc 6

 Driver Design Specification

3. Protocol Requirements

3.1 Introduction

The driver is a classic front-end/back-end cached driver using OID for variable lookup. It is also
capable of index based variable lookup which will allow use in ‘blackbox’ projects (2013-03-05 not
yet tested)

Driver was developed using DDK 5.5 and Citect 6.10 SpA, and has been tested with Citect 7.30.
Later OS’s will report driver is old an maybe not compatible. The driver will be recompiled for
VS2010 when Citect release their new DDK.

3.2 Pointlist

When the driver DLL has loaded and communication takes place it will first of all read the Fidelix
version and compare with the stored pointlist version. If it differs (or the pointlist file does not exist)
it will be read. The pointlist is stored in Citect’s data folder, where a new folder ‘Fidelix’ is created.
The pointlist will be named as the I/O device in Citect communications folder, ex C:\Documents
and Settings\All Users\Application Data\Citect\CitectSCADA 7.10\Data\fidelix2.dat. An alternative
path could be used, se Parameters section.

3.3 OID vs Index based adressing

Fidelix devices only support text based addressing. Citect compiler is however not capable of
handling text based addressing methods, hence the driver make use of direct variable database
(Variable.DBF) address lookups. When the driver DLL is loaded it will scan through all variable tag
databases in both the start project and all include projects. The unique OID key for all Fidelix vari-
ables will be stored in memory together with the variable address field. When Citect wants to read
some variable, it sends the OID to the driver which look in its variable lists and hopefully finds the
variable address.

To force the driver reading the pointlist again (if device configuration has been changed), the vir-
tual digital tag DEVICE.GETPOINTLIST could be set to TRUE. The pointlist will always be read at
startup if it does not exist or the parameter ReadPointListAtStartup is set to 1. The driver will
automatically try to read the version of the Fidelix program and reload the variable list if it is
changed.

If the pointlist file is not updated when configuration changes some variables could be missing
causing address range error.

In some cases this is a method that will not function properly, ex if the variable tag databases
does not exist locally (BlackBox project). To allow for these configurations the driver also support
index based lookups. To enable index based addressing, the parameter AllowBlackBox should be
set to 1. When enabled, the driver DLL will also create a text based cross-reference index file and
put in the same folder as the pointlist file. Here are some variables in index file C:\Documents and
Settings\All Users\Application Data\Citect\CitectSCADA 7.10\Data\fidelix2.txt:

…
1343=S03_LB01_GQ4X-MIN_MV.Value
1344=S03_LB01_GQ4X-MIN_MV.ValueAuto
1345=S03_LB01_GQ4X-MIN_MV.LockState
1346=S03_LB01_GQ4X-MIN_MV.Text
1347=S03_LB01_GQ4X-MIN_MV.Page
1348=S03_LB01_GQ4X-MIN_MV.Unit
…

fidelix_driver.doc 7

 Driver Design Specification

the file will be quite big because all variables are expanded with their parameters.

To access variable S03_LB01_GQ4X-MIN_MV.Text the index 1346 should be used.

If pointlist is reread, the driver will try to update the index file. It will never delete any variables,
even if they are deleted from the Fidelix. New variables will be added using previously never used
index numbers.

If index based lookup has been used, the index file(s) should never be deleted because the driver
will create and enumerate a new file, and the index numbers may change causing severe work for
the user.

It is important distributing also the index files if the project is moved.

3.4 FIDELIX.DBF

Template Unit type Raw
type

Bit
width

Read/
Write Comment

DEVICE.GETPOINTLIST 0x50000000 0 1 R/W Force pointlist reread
OTA:%K%#.TimeArray 0x70000000 1 16 R/W Time array (72 int’s)
OVA:%K%#.ValueArray 0x71000000 1 16 R/W Time value array (72 int’s)
XTA:%U%*256 0x20000000 1 16 R/W Time array (72 int’s)
XVA:%U%*256 0x21000000 1 16 R/W Time value array (72 int’s)
XD:%U%*256 0x30000000 0 1 R/W Digital value from Fidelix
XI:%U%*256 0x31000000 1 16 R/W Integer value from Fidelix
XR:%U%*256 0x32000000 2 32 R/W Real value from Fidelix
XL:%U%*256 0x34000000 4 32 R/W Long value from Fidelix
XS:%U%*256 0x37000000 7 1024 R/W String value from Fidelix
XB:%U%*256 0x38000000 8 8 R/W Byte value from Fidelix
OD:%J%K%! 0x60000000 0 1 R/W Digital value from Fidelix
OI:%J%K%! 0x61000000 1 16 R/W Integer value from Fidelix
OR:%J%K%! 0x62000000 2 32 R/W Real value from Fidelix
OL:%J%K%! 0x64000000 4 32 R/W Long value from Fidelix
OS:%J%K%! 0x67000000 7 1024 R/W String value from Fidelix
OB:%J%K%! 0x68000000 8 8 R/W Byte value from Fidelix
%U%*256 0x30000000 0 1 R/W Digital value from Fidelix
%U%*256 0x31000000 1 16 R/W Integer value from Fidelix
%U%*256 0x32000000 2 32 R/W Real value from Fidelix
%U%*256 0x34000000 4 32 R/W Long value from Fidelix
%U%*256 0x37000000 7 1024 R/W String value from Fidelix
%U%*256 0x38000000 8 8 R/W Byte value from Fidelix
%J%K%! 0x60000000 0 1 R/W Digital value from Fidelix
%J%K%! 0x61000000 1 16 R/W Integer value from Fidelix
%J%K%! 0x62000000 2 32 R/W Real value from Fidelix
%J%K%! 0x64000000 4 32 R/W Long value from Fidelix
%J%K%! 0x67000000 7 1024 R/W String value from Fidelix
%J%K%! 0x68000000 8 8 R/W Byte value from Fidelix

The DEVICE.GETPOINTLIST template could be used to force the driver re-reading the pointlist. If
set to 1 it will begin reading, when finished the driver will automatically reset it to 0.

Point description texts are not writable. If changed in device, a new pointlist must be retrieved for
the texts to be updated.

fidelix_driver.doc 8

 Driver Design Specification

3.5 Supported variables/parameters

IN

Value
ValueAuto
LockState
Text
Page
StatusText

DO

Value
ValueAuto
LockState
Text
Page
StatusText

AI

Value
ValueAuto
LockState
Text
Page
Unit
Limit[1-8].Value
Limit[1-8].Manual
Limit[1-8].Text

AO

Value
ValueAuto
LockState
Text
Page
Unit

CT

Offset
Text
Lookup[1-15]in
Lookup[1-15]out

TT

Value
LockState
Text
TimeArray (array of 72 int's)
ValueArray (array of 72 int's)

fidelix_driver.doc 9

 Driver Design Specification

AL

Value
ValueAuto
LockState
Acknowledged
Priority
Status
StatusText
AlarmGroup
AlarmNumber
AlarmStatus
Text

ST

Value[0-19]
Text[0-19]

CO

Text
Page
DaySetLockState
RunState
RunLockState
NightSetValue
NightPBand
ReturnLimitStart
ReturnLimitPBand
StatusText
DaySetValue
StagesUsed
Stage[0-5]Name
Stage[0-5]Value
Stage[0-5]PBand
Stage[0-5]LimitStart
Stage[0-5]LimitPBand
Stage[0-5]OutMin
Stage[0-5]OutMax
Stage[0-5]OffValue
PBand
ITime
DeadZone
SampleTime
SlowSpeedFactor

CALENDAR

Calendar[0-9]
Holiday[0-9]

fidelix_driver.doc 10

 Driver Design Specification

3.6 Address examples (OID and Index lookup)

Typical tag of Data Type Real using OID lookup. Address format here is same as in the Fidelix
OPC server.

Typical tag of Data Type String using OID lookup, forced to data type String. Sometimes the
Citect compiler is not able to determine the size of a variable (mostly strings) and will return bad
data to the user. Prefixing the address with a specific data type solves this problem. The prefixes
OD, OI, OR, OL, OS, OB are used with OID lookups.

fidelix_driver.doc 11

 Driver Design Specification

String tag from Calendar, it contains semicolon separated dates, ex:

100913Fr03;101013Fr03;0000000000; 0000000000;….

Prefixing the address with a specific data type (OS) ensures variable is handled as a string inter-
nally in Citect.

Typical tag of Data Type String using index lookup, forced to data type String. Sometimes the
Citect compiler is not able to determine the size of a variable (mostly strings) and will return bad
data to the user. Prefixing the address with a specific data type solves this problem. The prefixes
XD, XI, XR, XL, XS, XB are used with index lookups.

fidelix_driver.doc 12

 Driver Design Specification

Typical tag of Data Type Real using index lookup.

3.7 Time channel addressing

Time values are stored in two arrays, TimeArray and ValueArray containing timestamps (stored as
integers 0000..2359 or 9999 for ‘not in use’) and its desired value.

The array(s) have 72 elements (3 start/stop values Monday..Friday, followed by 3 start/stop values
for E1, E2, E3, HD, HA).

Time array (timestamps) example.

Ex from above TEST_LB01_TimeArray[24] would contain first start time for Friday.

TEST_LB01_ValueArray[24] would contain the first start value for Friday.

TEST_LB01_TimeArray[25] would contain the first stop value for Friday.

fidelix_driver.doc 13

 Driver Design Specification

4. User Interface

4.1 Introduction

This section defines how the user will see the driver. This relates directly to how the Citect forms
need to be filled out and any special INI options. For the kernel, the debug trace messages and
the Stats.Special counters are documented.

4.2 Driver Name

Fidelix

4.3 Ports Form (TCPIP setup)

4.3.1 Baud Rate

n/a

4.3.2 Data Bits

n/a

4.3.3 Stop Bits

n/a

4.3.4 Parity

n/a

4.3.5 Special Opt

-i The destination server IP-address, ex –i192.168.123.10.

-p The destination server IP-port, ex –1235.

-t Use TCP/IP (default)

Neither RS-232 (COMX) nor UDP can be used.

4.4 IO Devices Form

4.4.1 Protocol

Fidelix

4.4.2 Address

n/a

fidelix_driver.doc 14

 Driver Design Specification

4.5 Pulldown lists Help

The following entries should be included in the Citect Help.DBF spec file.

TYPE DATA FILTER

PROTOCOL FIDELIX

4.6 PROTDIR.DBF

The following entries should be included in the Citect Protdir.DBF spec file.

TAG FILE BIT_BLOCK MAX_LENGTH OPTIONS

FIDELIX FIDELIX 16 2048 0x2000cf

4.7 Parameters and INI options

4.7.1 Standard Parameters

Block 16 (Citect blocking is prohibited)
Delay 1 ms
MaxPending 75
Polltime 0 ms
Timeout 10000 ms
Retry 0 (Sets the complete packet retries, should be 0)
WatchTime 30 s

4.7.2 Driver Specific Parameters

All Fidelix specific parameters are located in the section ‘Fidelix’

PARAMETER DEFAULT DESCRIPTION

TimeOut 10000 ms Response timeout for the device (even partly received packets will
reset the timout timer)

MaxPending 75 Number of DCBs the driver may handle simultanously. Actually the
default is quite low for this driver, but Citect is not capable of han-
dling an unlimited number of outstanding DCBs. This number must
be multiplied by number of channels to get the total DCBs for
Citect.

WatchTime 30 s When Citect send DCB requests to the driver, it have to respond
within this time. This is also the cycle time for init and status re-
quests for offline devices.

ConnectTimeout 15000 ms msecs before we consider the IP connection/reconnect has failed.
The IP layer may have an unreasonable timeout up to 120 sec-
onds.

TraceToLogFile 0 If set to 1, it will cause the driver to write debug data to the file Fi-
delix.log stored in Citect’s data folder. The file will only be created
if debug in Kernel is used. No check is made to ensure disk is not

fidelix_driver.doc 15

 Driver Design Specification

filled by the log file.

TraceOptions 0 Options for trace (may be bit-weighted togheter):

1 – Trace found I/O devices in DBF’s
2 – Trace variables found in DBF’s (will also trace I/O devices)

TraceLimit 40 Limits the number of bytes presented in Kernel when using debug-
command.

IgnoreStartupErrors 0 If set to 1, irregularities in the variable database will not be re-
ported. However, the parameters will be set as bad values if re-
quested by Citect.

Default is that the driver reports any potential problem at startup
time using a messagebox. The messagebox will however block
the startup sequence.

AllowBlackbox 0 If set to 1 the driver will create and also update an text based index
file used for index variable lookup.

RequestInterval 50 ms Each request cycle, the driver will scan through internal queues for
work to do (create packets, update statistics, cleanup memory,
return new values from cache etc). Performance is linear to this
time. If cache is fully updated the driver will return an average of
MaxPending / RequestTime values per second (default 75 / .050 =
1500 values).

Min value is 10 msecs. Timer granularity is depending of OS.

ReadPoint-
ListAtStartup

0 If set to 1, it will force the driver DLL to reread the pointlist when
Citect is starting, even if the pointlist file already exists.

RestartInterval 5000 When device times out, it will wait this small amount of time before
trying to initiate communications again. The Fidelix device close
sockets very fast sometimes if no communication takes place,
hence this time should not be very long.

UpdateInterval 2000 Number of msecs between each request for updated tags

AltRunPath [CTEDIT]
RUN

Alternative Run path, is used to find the top project.

AltUserPath [CTEDIT]
USER

Alternative User path. Is used by OID lookup mechanisms to find
the Master.DBF file.

AltDataPath [CTEDIT]
DATA

Alternative Data path. Is used to determine where to store pointlist
and index files. If set to the comms project path also index files will
be backed up.

TimeTableWriteDelay 500 Delay time before TimeTables are written. This prevents multiple
writes to device when same tables is updated.

4.8 Debug Messages

Shows the outgoing/incoming data packets. Header in verbose format and data/value in hex.

4.9 Stats Special Counters

Number Label Purpose/Meaning of this counter

fidelix_driver.doc 16

 Driver Design Specification

0 DCB Requests Total number of driver requests

1 Tx bytes Transmitted bytes

2 Rx bytes Received bytes

3 Tx packets Transmitted packets

4 Rx packets Received packets

5 GetVersions Number of GetVersion commands (issued at startup/reconnect)

6 GetPointlists GetPointList commands (number of point list rereads)

7 GetChgPoints GetChangedPoint commands (number of variable updates)

8 SetPoints SetPoint commands (number of variable writes)

9 Updated vars Number of updated variables (read)

10 n/a

11 n/a

12 n/a

13 n/a

14 n/a

15 n/a

16 n/a

17 n/a

18 n/a

19 n/a

4.10 Hints and Tips

None for now

fidelix_driver.doc 17

 Driver Design Specification

5. Basic Testing

5.1 Introduction

The programmer will perform a minimum level of testing which is outlined here.

A sample Project is available which can be used as a starting point for the programmers test Pro-
ject. When the programmer has completed basic testing and debugging this Project should by
backed up and supplied to the Citect Testing department.

5.2 Procedure

The following are points should be covered by basic testing.

• On startup the IO Device comes online without errors.

- Ok

• The driver supports IO Devices of addresses as documented in the specification.

- Ok

• The driver reports the IO Device offline when the IO Device is a) powered down, b) discon-
nected.

- Ok

• The driver will re-establish communication with the IO Device after a) power cycle, b) discon-
nection/ reconnection.

- Ok

• Confirm that retries (if supported) and error reporting operate correctly.

- Ok (Statistics report)

• The driver reads all the device data types documented as readable in this specification.

- Ok

• The driver writes to all the device data types documented as write-able in this specification.

- Ok

• The driver reads and writes all data formats supported by the protocol, ie DIGITAL, INT,
LONG, REAL, STRING.

- Ok

• Test the limit of the IO Devices request size, this should be done for at least DIGITAL and an
INT data formats.

- Not applicable to this driver.

fidelix_driver.doc 18

 Driver Design Specification

• Let the driver run over night and check that no retries or other errors have occurred.

- Ok

• If a multidrop or network protocol and if the hardware is available then the protocol should be
tested with more than one IO Device connected.

– Ok

fidelix_driver.doc 19

 Driver Design Specification

6. Performance Testing

6.1 Introduction

Tests which give some indication of the drivers performance. The programmer needs to perform
these tests since the results feed back into the Constants structure and the PROTDIR.DBF.

6.2 Calculating the Blocking Constant – Not applicable

Because this driver is a hybrid of the ‘Front-End-Back-End’ type, and due to the nature of the Fi-
delix protocol, it does not support blocking of any kind

fidelix_driver.doc 20

 Driver Design Specification

7. References

7.1 References

n/a.

fidelix_driver.doc 21

	Driver version history
	Driver documentation version history
	QA
	Introduction
	Procedure for generating a new driver

	Target Device(s) and Protocol
	Introduction
	Device Manufacturer
	Device Definition
	Communications Method
	Communications/Hardware Configuration
	Contacts

	Protocol Requirements
	Introduction
	Pointlist
	OID vs Index based adressing
	FIDELIX.DBF
	Supported variables/parameters
	Address examples (OID and Index lookup)
	Time channel addressing

	User Interface
	Introduction
	Driver Name
	Ports Form (TCPIP setup)
	Baud Rate
	Data Bits
	Stop Bits
	Parity
	Special Opt

	IO Devices Form
	Protocol
	Address

	Pulldown lists Help
	PROTDIR.DBF
	Parameters and INI options
	Standard Parameters
	Driver Specific Parameters

	Debug Messages
	Stats Special Counters
	Hints and Tips

	Basic Testing
	Introduction
	Procedure

	Performance Testing
	Introduction
	Calculating the Blocking Constant – Not applicable

	References
	References

