[image: image4.png]
Driver Design Specification

Citect for Windows, Version 5.xx

Exomatic driver, User information and design

Driver version history

	Version
	Date
	Modified By
	Details

	1.0.0.A1
	2000-12-10
	Tomas Rook
	Main development

	1.0.0.A1
	2001-06-08
	Tomas Rook
	AlarmAck functions ok

	1.0.0.B1
	2001-06-14
	Tomas Rook
	AlarmAck functions tested (not 5.30/5.31)

	1.0.0.B2
	2001-06-14
	Tomas Rook
	AlarmCiCodeTries = 0 does not start the CiCode thread (no ctAPI usage)

	1.0.0.B3
	2001-06-28
	Tomas Rook
	Format() used, better Trace(), use of more Stats

	1.0.0.B4
	2001-07-01
	Tomas Rook
	Added MAXRESPONSETIME stats

	1.0.0.B5
	2001-10-17
	Tomas Rook
	iError = NO_ERROR bug fixed

	1.0.0.B5
	2001-10-18
	Tomas Rook
	Improved debugging during ack's

	1.0.0.B5
	2001-10-29
	Tomas Rook
	Improved debugging during ack's

	1.0.0.B5
	2001-11-15
	Tomas Rook
	Only initialises units once

	1.0.0.0
	2001-12-11
	Tomas Rook
	ForcedCheck implemented

	1.0.0.1
	2001-12-11
	Tomas Rook
	iAckAlways implemted, copyrights changed to Autic from CiT

	1.0.1.0
	2002-02-05
	Tomas Rook
	iShutdownDelay implemented

	1.0.2.0
	2002-02-20
	Tomas Rook
	iIgnoreStartupErrors & iTraceAlarmEventsOnly implemented

	1.0.2.1
	2002-02-21
	Tomas Rook
	Improved Trace functions

	1.0.3.0
	2002-03-04
	Tomas Rook
	Logger functions implemented

	1.0.3.1
	2002-03-08
	Tomas Rook
	Moved variable tag name to comment field

	1.0.3.2
	2002-03-12
	Tomas Rook
	Does not indicate double trend tags for common include projects

	1.0.3.3
	2002-04-16
	Tomas Rook
	DRIVER_ADDRESS_RANGE_ERROR was returned instead of DATA_NOT_YET_VALID, trace bad variable lookups

	1.0.3.4
	2002-05-25
	Tomas Rook
	DayLight flag implemented

	1.0.3.5
	2002-05-27
	Tomas Rook
	Trend variables from other pages works ok

	1.0.3.6
	2002-05-28
	Tomas Rook
	Max 10 loops when alarms are read

	1.0.3.7
	2002-05-30
	Tomas Rook
	Logger fixups (address issue)

	1.0.3.8
	2002-06-05
	Tomas Rook
	Logger fixups (address issue) again, 10 loops function removed

	1.0.3.9
	2002-06-05
	Tomas Rook
	Logger fixups (address issue) again, CompareNoCase -> ok

	1.0.4.0
	2002-06-11
	Tomas Rook
	Logger uses an extra file, iShutdownDelay on both sides of ExoCitProcessExit()

	1.0.4.1
	2002-06-19
	Tomas Rook
	BackupLogFiles implemented

	1.0.4.2
	2002-08-26
	Tomas Rook
	Enter/Leave CriticalSection() removed (test for SÖS only - not released)

	1.0.4.3
	2002-08-28
	Tomas Rook
	msAlarmTime added, defaults to TRUE

	1.0.5.0
	2002-10-21
	Tomas Rook
	Block/Unblock methods added, MSAlarmTime defaults to FALSE

	1.0.5.1
	2002-12-12
	Tomas Rook
	Prevents the trend tag lookup loop to exit if there are double tags defined using same address

	1.0.5.2
	2003-09-24
	Tomas Rook
	LookupAlarmUsingTagName parameter implemented

	1.0.5.3
	2003-10-02
	Tomas Rook
	Changed DefaultBlocking constant from 256 to 16 and enabled OPT_ANY_ADDRESS_BOUNDARY

	1.0.5.4
	2003-10-24
	Tomas Rook
	AltUserPath and AltRunPath implemented

Driver documentation version history

	Date
	Modified By
	Details

	2001-05-02
	Tomas Rook
	Preliminary

	2001-07-02
	Tomas Rook
	Minor updates

	2001-12-14
	Tomas Rook
	Added new parameters

	2002-02-21
	Tomas Rook
	Added new parameters

	2002-02-28
	Tomas Rook
	Added logger functions

	2002-03-04
	Tomas Rook
	Updated logger functions

	2002-03-08
	Tomas Rook
	Updated logger functions

	2002-05-27
	Tomas Rook
	Added new parameters

	2002-06-17
	Tomas Rook
	CiCode updated for more info

	2002-10-21
	Tomas Rook
	Block/Unblock description added, msAlarmTime added

	2003-09-24
	Tomas Rook
	LookupAlarmUsingTagName added

	2003-10-24
	Tomas Rook
	AltUserPath and AltRunPath added

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Contents

61.
QA

1.1
Introduction
6
1.2
Procedure for generating a new driver
6
1.3
Future functions
6
2.
Target Device(s) and Protocol
7
2.1
Introduction
7
2.2
Device Manufacturer
7
2.3
Device Definition
7
2.4
Communications Method
7
2.5
Communications Configuration
7
2.5.1
I/O Device (modules) Settings
8
2.5.2
EXOtest
8
2.6
Contacts
8
3.
Protocol Requirements
9
3.1
Introduction
9
3.2
Initialising the Port
9
3.3
IO Device Online Test
9
3.4
Error Handling
9
3.5
Bad variables
9
4.
General Driver description
10
4.1
Implementation
10
4.2
Cache
10
4.3
Alarms
10
4.3.1
Preserving Alarm Status
10
4.3.2
Remote Alarm acknowledges (from I/O Devices)
11
4.3.3
Local Alarm acknowledges (from Citect)
11
4.4
Request Performance
14
4.5
Writes
14
4.6
Dial Out connections
14
4.7
Redundancy
14
4.8
Logger (long time Trend)
14
4.8.1
Logger module setup
14
4.8.2
Citect Trend setup
15
4.9
EXOCIT.DBF
16
4.9.1
TEMPLATE
16
4.9.2
UNIT_TYPE
17
4.9.3
RAW_TYPE, BIT_WIDTH
17
4.9.4
LOW, HIGH
17
4.9.5
COMMENT
17
5.
User Interface
18
5.1
Introduction
18
5.2
Driver Name
18
5.3
Boards Form
18
5.3.1
Board Type
18
5.3.2
Address
18
5.4
Ports Form
18
5.4.1
Baud Rate
18
5.4.2
Data Bits
18
5.4.3
Stop Bits
18
5.4.4
Parity
18
5.4.5
Special Opt
18
5.5
IO Devices Form
18
5.5.1
Protocol
18
5.5.2
Address
19
5.6
Pulldown lists Help
19
5.7
IO Device Data Types and Formats
19
5.8
IO Device Function Blocks and their Parameters (EXOCIT.DBF)
19
5.9
PROTDIR.DBF
20
5.10
Parameters and INI options
20
5.10.1
Standard Parameters
20
5.10.2
Driver Specific Parameters
20
5.11
Driver Specific Errors
21
5.12
Driver Error Help
21
5.13
Debug Messages
22
5.14
Stats Special Counters
22
5.15
Hints and Tips
22
6.
Basic Testing
24
6.1
Introduction
24
6.2
Procedure
24
7.
Performance Testing
26
7.1
Introduction
26
7.2
Calculating the Blocking Constant – Not applicable
26
7.3
References
26

1. QA

1.1 Introduction

This document follows the development of the new driver. It serves as a functional specification, design specification and test specification.

1.2 Procedure for generating a new driver

The following check list defines the QA steps for generating a new driver. This procedure must be followed for drivers to be integrated into Citect.

	
	Description
	Person
	Date

	1
	This specification document is written.
	TR
	2001.05.02

	2
	Specification reviewed and accepted by R&D department.
	n/a
	

	3
	Driver coded.
	TR
	2001.05.02

	4
	Code and specification reviewed and accepted by R&D department.
	n/a
	

	5
	Testing with connection project, and performance test.
	TR
	2001.05.02

	6
	Driver integrated into Citect source and built.
	n/a
	

	7
	Documentation is written (HLP or MVB files)
	n/a
	

	
	At this checkpoint coding is done and the driver is available as a beta.
	
	

	8a
	Full testing is carried out.
	TR
	2002.02.05

	8b
	Performance testing is carried out.
	TR
	2002.02.05

	8c
	Specification and documentation updated from testing/performance tests
	TR
	2002.02.21

	
	At this checkpoint the testing is complete.
	
	

	9a
	Review for completeness by developer, tester, documentor and R&D staff
	n/a
	

	9b
	Add driver to install disks
	BG
	2001.12.07

	9c
	Add driver to protocols database
	n/a
	

	9d
	Support notified of new driver for training purposes
	n/a
	

	10
	Sales notified of new driver
	
	

	
	The driver is now finished.
	
	

The hand over of a driver requires that all applicable above steps are completed and checked off.

1.3 Future functions

The dial out implementation will probably be reviewed.

2. Target Device(s) and Protocol

2.1 Introduction

This section defines the types of I/O Devices that are targeted by this driver.

2.2 Device Manufacturer

Exomatic AB
Garvaregatan 4
Box 64
SE-260 20 TECKOMATORP
SWEDEN

Phone: +46 (0)418 661020

2.3 Device Definition

The driver is intended for the ExoFlex line of devices and all older devices that communicates with the Exomatic EXOapt software package.

These devices have a configurable number of I/O’s (digital input, analog input, analog output etc, commonly named PIFA’s).

2.4 Communications Method

Serial RS-232, directly connected or through another device (pipe). The driver have some support for dial-out. The ExoFlex devices also may use TCP/IP. Older devices need an external terminal server to be able to establish TCP/IP communication.

The Citect driver itself incorporates the methods and procedures that are exported by the ExoScan DLL (using another DLL, ExoCitEx). This DLL takes care of all physical communication to the ExoCom, ExoName and other DLL’s that may be needed for the actual communication to take place. This way, only one channel (board) is used to communicate with several devices. To accomplish this, the driver is incorporated as a board driver.

[image: image1.wmf]

:

 RS

-

485 (or TCP/IP)

ExoFlex

ExoFlex (pipe)

 RS

-

232

2.5 Communications Configuration

The Exomatic System and EXOapt need to be installed before the ExoCit driver is installed. ExoCit driver will automatically install necessary extra Exomatic provided files.

2.5.1 I/O Device (modules) Settings

I/O Devices are named Modules in the Exomatic environment. All devices need to be configured in the Exomatic software tool EXOapt to provide communication with the PC (i.e. EXOtest). This configuration is out of this manual’s scope and are well described in the Exomatic documentation.

2.5.2 EXOtest

The Exomatic software tool EXOtest (which is included in the EXOapt package) should be used to verify that the connectivity to Exomatic devices is ok. Any performance or connectivity issue should be solved at this level, before trying to connect using Citect. If the communication works well at this level, it will most likely work well in Citect.

2.6 Contacts

Autic System AB, Box 81, SE-261 22 LANDSKRONA
+46 (0)418-471160
Exomatic AB, Box 64, SE-260 20 TECKOMATORP
+46 (0)418-661020
TroSoft HB, Box 2055, SE-144 03 RÖNNINGE
+46 (0)8-53257262

3. Protocol Requirements

3.1 Introduction

This section documents all the requirements of the protocol itself.

3.2 Initialising the Port

No special initialisation is necessary.

3.3 IO Device Online Test

The drivers’ response to CTDRV_INIT_UNIT and CTDRV_STATUS_UNIT is that they always are online. The offline detection is made when any physical variable is read. If the Exomatic DLLs (hereafter referred to as ExoCitEx which is the DLL ExoCit communicates through) respond with an ALM_COMERR error to the EXOcitexReadVariable() function then a DRIVER_UNIT_OFFLINE error is returned to Citect.

The reason to use this ‘always online’ scenario is that alarm polls are made directly to the locally cached alarm list. This list is provided even if the devices are physically not connected to prevent dial-outs to occur for alarm polls.

3.4 Error Handling

Following responses from ExoCitEx are possible:

ALM_COMERR
Results in a DRIVER_UNIT_OFFLINE return.
ALM_DOESNOTEXISTS
Results in a DRIVER_ADDRESS_RANGE_ERROR return.
ALM_DATAERR
Results in a DRIVER_BAD_DATA_TYPE return.
ALM_NODATA
Results in a DRIVER_TIMEOUT return if the timeout time has expired.
ALM_OK
Results in a NO_ERROR and value return.

The timeout parameter used is the standard [ExoCit]TimeOut parameter used in CITECT.INI. It defaults to 20000 ms. This parameter would most likely need to be changed for a dial out connection. The transmit retry counter is not in use.

3.5 Bad variables

All variables should be defined using the ExoTag tool to ensure consistancy between the module definition and the Citect variable database.

When the driver DLL is loaded by Citect, its OpenChannel() procedure will call the EXOcitexIsVariable() function to verify that the variable is valid in the Exomatic configuration. This is done towards the selected project in EXOapt. If the variable is invalid, the driver will stop the loading process and show a message box indicating this error condition. When the user acknowledges the message box the driver will continue to load.

If the variable is asked for later on, the driver will return the DRIVER_ADDRESS_RANGE_ERROR error message.

4. General Driver description

4.1 Implementation

This driver is written as a board driver. It communicates using Exomatic provided DLLs that encapsulates the actual protocol levels to ensure future, and backward, compability. Therefore this driver may only be loaded in one instance. The driver will cause ExoCitEx.DLL to be loaded, which in turn loads and run the ExoCiPmp.EXE file. The ExoCiPmp’s only task is to load a new instance of ExoCitEx.DLL (that runs in ExoCiPmp’s process space) and load the ExoScan2.DLL. ExoCiPmp then connects the method callback addresses of ExoScan2.DLL to ExoCitEx.DLL. This way, the ExoScan2 DLL has an own thread that may perform all connect/disconnect, trend logging and house-keeping tasks without Citect being involved. The two instances of ExoCitEx holds a mirror object and perform task switching when needed.

4.2 Cache

This driver does not hold an own cache, but works in an asynchronously way close to ExoCitEx. ExoCitEx holds and internal cache of recent adviced variables. It is therefore important that ExoCit has enough commands pending to ensure that the cached variables won’t time out. The default timeout of ExoCitEx is 2400 ms and may be changed by adding [ExoCitEx]AdviseTO parameter in the EXOMATIC.INI file in the Windows directory. The default [ExoCit]MaxPending parameter is 40. Increasing this parameter will cause ExoScan to do more effective batch reads, and will significally decrease response time for alarm reads. A value of up to 200 is not unrealistic.

4.3 Alarms

Due to the nature of this type of devices, several configurations are based upon dial-out connections. The devices may be set up to do automatic dial-in when an alarm has occurred. When a device is calling, it is polled for all alarm events, not only the one that caused the dial-in.

At startup time, the driver ‘subscribe’ on the variable tags that are needed for alarms (the Exomatic system also verifies that it is a valid alarm variable). This means that Citect polls the alarm tags, but the driver just returns the last known state from its internal cache and continously asks ExoCitEx for any new alarm events. When any new alarm events has occurred, the driver gets them from ExoCitEx and do a lookup in the cached variable array for the corresponding tag and sets its new state. Citect will be notified at next alarm poll (by default within 2 seconds).

The driver will never return any error message when Citect polls the alarm variables (unless the variable was detected as invalid at subscription time).

The drivers command queue is polled for alarm DCBs at the [ExoCit]Delay interval, which defaults to 50 ms. This gives an average response time for alarm polls of 25 ms. Within this interval, the driver returns all alarm DCBs, that is why Kernel show an extraordinary performance of digital reads.

4.3.1 Preserving Alarm Status

When the status is changed for an alarm point (either by alarm events arriving from I/O devices or Alarm Acks made from Citect) it is written to the Alarm Status file cache. The alarm status file updates will be flushed when next AlarmCleanup call is made, which by default is within 1000 ms. It is configurable by the [ExoCit]AlarmCleanupTime in CITECT.INI. This ensures that the alarm list is persistant throughout the system, even if an unexpected power failure occurs.

The alarm status file is named Exo_PortName.ALM where PortName is the port name used in the Citect configuration. The path of the file may be set by using the CITECT.INI [ExoCit]AlarmFilePath parameter. It defaults to the run path of the selected Citect project.

The driver will read this file (if existing) at startup time and set the last known status before the driver responds to any alarm polls.

By deleting this file, all alarm status’ are set to INACTIVE.

4.3.2 Remote Alarm acknowledges/block/unblocks (from I/O Devices)

If the alarm event was an acknowledge (or block/unblock), the state is stored just like a normal alarm event, but it also resets the CiCode trigger. When Citect has done next alarm poll, the AlarmCleanup task (after a slight delay) will begin to try acknowledging the alarm. This is done to ensure that a system using extremly slow alarm poll intervals won’t do unnecessary CiCode calls, i.e. try to acknowledge any unexisting alarm event etc.

Any block/unblock and acknowledge that arrives from the devices are sent to Citect using CiCode from the driver. This is accomplished by ctAPI calls using a separate thread (the CiCode thread). This means that this driver will consume one ctAPI connectivity license to be able to perform these actions. The ctAPI is not opened/closed between every period of ack’s etc, which means that the connectivity license usage is permanent. If ctAPI should not to be used (to preserve a connectivity license or prevent remote acknowledges) then it may be disabled by setting the [ExoCit]AlarmCiCodeTries to 0. This will prevent the CiCode thread from running and therefore disable Citect from detecting alarm acknowledges made at the device display.

4.3.3 Local Alarm acknowledges/block/unblocks (from Citect)

When the alarm is acknowledged in the Alarms Page in Citect, it is done using a CiCode call, ExoAlarmAck(), supporting the Animation Number of the alarm. The CiCode will set the Exo_AlarmAck variable tag (which is defined as a string) to the tagname of the alarm tag. The tag name must be defined as module:number, i.e. ccm:42 which means module ccm, variable tag 42 (if LookupAlarmUsingTagName is set to 1, the alarm tag name must not follow that rules). The driver will do a lookup in the alarm variable list for this I/O Device and do an AlarmAck method call into ExoCitEx for this variable.

The enable/disable (or unblock/block) methods works in the exact same way as acknowledgements.

There is a sample Exomatic project and also a matching Citect project provided with the driver that holds a sample Alarms Page template in VGA default mode that is configured for this. The CiCode below is included in the very same project.

Alarm must be setup in the EXOapt Alarm Scan Tool to call computer station upon alarm events.

//

//

// Alarm.CI

//

// Date / Sign / Description

// --

// 2001-04-04 / TR / Main

// 2001-10-11 / TR / Added AlarmGetField wrapper

// 2002-03-03 / TR / Added Trend Read function

// 2002-06-17 / TR / Improved Trend error debug

//

//

//

//

//

// --

REAL rTrnTable[128];

FUNCTION

ExoAlarmAckAll(INT hANFirst, INT hANLast)

 INT iAN;

 iAN = hANFirst;

 WHILE iAn >= hANLast DO

 ExoAlarmAck(iAN);

 iAN = iAN - 1;

 END

END

FUNCTION

ExoAlarmAck(INT hAN)

 STRING sTag;

 sTag = AlarmGetDsp(hAN, "Type");

 If StrSearch(0, sTag, "UN") <> -1 THEN

 sTag = AlarmGetDsp(hAN, "Tag");

 IF StrSearch(0, sTag, ":") <> -1 THEN

 AlarmAck(0, 0);

 Exo_AlarmAck = sTag;

 ConfirmAlarm(sTag);

 ELSE

 AlarmAck(0, 0);

 END

 END

END

FUNCTION

ConfirmAlarm(string AlarmTag)

 INT AlarmRec;

 INT iLoops;

 INT hTask;

 AlarmRec = AlarmFirstTagRec(AlarmTag,"","");

 WHILE AlarmRec <> -1 AND iLoops < 5 DO

 // First check if the alarm is really active

 IF AlarmGetFieldRec(AlarmRec,"OnTime") <> "0" THEN

 // And we haven't acked it yet

 IF AlarmGetFieldRec(AlarmRec,"AckTime") = "0" THEN

 //Acknowledge the current record

 AlarmAckRec(AlarmRec);

 END

 END

 AlarmRec = AlarmNextTagRec(AlarmTag,"","","");

 iLoops = iLoops + 1;

 END

 hTask=TaskHnd();

 TaskKill(hTask);

END

STRING FUNCTION ReadFieldRec(INT iRecord, STRING sField)

 //

 // AlarmGetFieldRec wrapper for Exomatic

 //

 return AlarmGetFieldRec(iRecord, sField);

END

FUNCTION ExoTrendRead()

 //

 // TrnSetTable wrapper for Exomatic

 //

 STRING sLogFile, sLine, sAddress, sOldAddress;

 INT iStopTime, iSamples, iInterval, hFile;

 INT iTimeZoneAdjust, iSample, iResult, iLastError;

 // Don't halt this code if we fail

 ErrSet(1);

 // Defaults to RUN-path if not set

 sLogFile = ParameterGet("CTEDIT","RUN","");

 sLogFile = ParameterGet("EXOCIT", "LoggerFilePath", sLogFile);

 // Add backslash if necessary...

 IF StrRight(sLogFile, 1) <> "\" THEN

sLogFile = sLogFile + "\";

 END

 sLogFile = sLogFile + "ExoCit.LOG";

 // Enter an infinite loop

 WHILE TRUE DO

 // Determine if we have any new data...

IF FileExist(sLogFile) THEN

 hFile = FileOpen(sLogFile , "r");

 IF IsError() <> 0 OR hFile = BAD_HANDLE THEN

 TraceMsg("Can't open Logger/Trend file '" + sLogFile + "'");

 ErrLog("Can't open Logger/Trend file '" + sLogFile + "'");

 END

 IF hFile <> BAD_HANDLE THEN

 // Should be done 'on-the-fly' if it needs to be changed

 iTimeZoneAdjust = StrToInt(ParameterGet("EXOCIT", "TimeZoneAdjust", "1"));

 sOldAddress = "";

 // Get all lines

 WHILE NOT FileEOF(hFile) DO

 sLine = FileReadLn(hFile);

 // New section

 IF sLine = "#" THEN

 // Read Address

 sAddress = FileReadLn(hFile);

 // Read Start Time (UTC)

 sLine = FileReadLn(hFile);

 sLine = FileReadLn(hFile);

 // Read Stop Time (UTC)

 sLine = FileReadLn(hFile);

 iStopTime = StrToInt(sLine);

 sLine = FileReadLn(hFile);

 // Read Sample Interval (seconds)

 sLine = FileReadLn(hFile);

 iInterval = StrToInt(sLine);

 // Read number of Samples

 sLine = FileReadLn(hFile);

 iSamples = StrToInt(sLine);

 // Read total number of samples

 sLine = FileReadLn(hFile);

 // Get all samples

 IF iSamples > 128 THEN

 iSamples = 128;

 END

 iSample = 0;

 WHILE iSample < iSamples DO

 sLine = FileReadLn(hFile);

 // Store in a backward order to get it right in the trend database

 rTrnTable[iSamples - iSample - 1] = StrToReal(sLine);

 iSample = iSample + 1;

 END

 IF IsError() THEN

 TraceMsg("Logger/Trend file '" + sLogFile + "' is bad");

 ErrLog("Logger/Trend file '" + sLogFile + "' is bad");

 END

 IF iSamples > 0 THEN

 TraceMsg("Writing log for '" + sAddress + "', time period " + TimeToStr(iStopTime,4) + " samples " + IntToStr(iSamples) + " interval " + IntToStr(iInterval));

 ErrLog(" Writing log for '" + sAddress + "', time period " + TimeToStr(iStopTime,4) + " samples " + IntToStr(iSamples) + " interval " + IntToStr(iInterval));

 iResult = TrnSetTable(sAddress, iStopTime - (iTimeZoneAdjust * 3600), iInterval, iSamples, rTrnTable[0]);

 iLastError = IsError();

 IF iLastError <> 0 OR iResult = 0 THEN

 // Don't show errors more than once per session

 IF sOldAddress <> sAddress THEN

 TraceMsg("Logger/Trend variable '" + sAddress + "' from file '" + sLogFile + "' couldn't be written, err " + IntToStr(iLastError));

 ErrLog(" Logger/Trend variable '" + sAddress + "' from file '" + sLogFile + "' couldn't be written, err " + IntToStr(iLastError));

 sOldAddress = sAddress;

 END

 END

 ELSE

 TraceMsg("Samples is 0 for '" + sAddress);

 ErrLog(" Samples is 0 for '" + sAddress);

 END

 SleepMS(10);

 END

 END

 FileClose(hFile);

 FileDelete(sLogFile);

 END

 END

// Just hold for 10 seconds before we check for a new file...

Sleep(10);

 END

END

4.4 Request Performance

Due to the nature of this driver, and the possibility to do internally cached reads, Citect automated blocked reads are turned off. The first response time for a directly connected device is about 50 ms, for a piped device (over RS-485) 200 ms. This is the total response time for five variables read in the same ‘batch’ the same time. The response time from the driver is less than 50 ms for following requests of the same variables.This is the time the driver needs to reply to Citect requests, and is strictly bound to the Delay parameter.

The TCP/IP PIFA communication gives significally longer response times due to the extra overhead.

The driver immediately sends requests to ExoCitEX which will do an internal blocking (glumf) of the questions to external devices. If neccesary, they will be called (dial out). Due to the asynchronously nature of requests, the answers to Citect will not be in the order they arrived to the driver.

4.5 Writes

Write requests are never cached, they are performed at once. However, Citect may push a lot of write DCB’s at the same address if the user use a Slider etc to set the value, and let it use ‘Continous update of tag’. The driver could get a lot of consecutive write requests to the same address, and will handle them in the order they arrived. If it is a dial out device, it will be called using the default disconnect timeout to decide when to disconnect if [ExoCit]AutoConnect in CITECT.INI is set to 1.

4.6 Dial Out connections

Dial out may be done in two separate ways, either automatically or manually. If done automatically, the driver will immediately call the Connect method in ExoCitEx when Citect asks for a variable that belongs to a dial out device. When the variable is not asked any more (picture is changed etc) the driver will call the Disconnect method in ExoCitEx when the connection timer expires.

Alarm polls will never initiate a dial out, because the alarm variable states are always returned by the local cache.

The automatic disconnections are done using the [ExoCit]ConnectTimeout parameter in CITECT.INI which defaults to 20000 ms. If it is set to 0, it will never hangup unless the Connect variable is forced to 0.

4.7 Redundancy

The Exomatic devices does not support double masters, and it is therefore not possible to set up redundancy using the normal mechanism in Citect.

There is a ‘dummy’ ExiCit driver that may be used on the standby server. This driver always returns I/O device request as off line.

4.8 Logger (long time Trend)

Exomatic modules may hold an internal buffer (the logger bitpacks) of sampled variables. This data is automatically transferred to the Citect Trend databases at dial-outs/dial-ins.

For the logger/trend functions to work properly, Citect 5.40 must be used.

4.8.1 Logger module setup

The Logger Tool must be used to set up the variables that should be logged. See Exomatic manuals for thorough information about the settings in Logger Tool and CCP settings.

[image: image2.png]
4.8.2 Citect Trend setup

The logged variable must exist as a Citect Tag. It must also be defined in the Trends database. If the tag is not defined, Citect can’t store the incoming data. It must be stored in the Comment field.

[image: image3.png]
The storage method should be Floating Point (8-byte samples). The old method Scaled (2-byte samples) could also be used, but then care must be taken to set the Min/Max Raw and Engineering values in the Tags database.

If negative values is to be logged, the Min/Max Raw and Engineering values in the Tags database must be set.

The Trigger and Expression should always be set to 0 and the Sample Period must be the same that was used in the Logger Tool. The shortest sample period is one minute. Sample type must be set to TRN_PERIODIC.

All trend tags must be defined in the same project that holds the associated variable tag, or the driver will not be able to lookup the trend tag name.

Citect will never ask for this trend tag from the I/O Server. The driver will automatically insert incoming trend data into the trend tag associated database when a dial-in or dial-out connection is made.

Trend data is automatically transferred when the logger bitpac reaches about 80% of the buffer size, but a transfer may be initiated for ExoLine connected devices by setting the Logger.DPE DumpForce variable for the appropriate log(s) to 1. Then the CCM variable ForcedCheck must be set to 1 to initiate the ‘dial’.

The DumpForce variable is imported with ExoTag, just like any other variable.

The ExoTrendRead() CiCode function must be started for logger data to be inserted into the Trends Databases.
4.8.3 Trend/Logger description

The ExoCitEx software gets new logger data from ExoScan and adds some time stamps to it before it is written or appended to a file name ExoCit.Lg0. That file is parsed by a separate thread in ExoCit that makes a lookup of trend tag names using the variable address provided from the module. ExoCit renames ExoCit.Lg0 to ExoCit.Lg1, opens it, looks up addresses and exchange them. When the file is closed it is renamed to ExoCit.Log. This sequence is only done if the file ExoCit.Log does not exist.

The file ExoCit.Log is read by the ExoTrendRead() CiCode function which parses the data and inserts it into the trends databases.

4.9 EXOCIT.DBF

The database specification contains all parameter types that Citect may ask for. Generally all variables (both local and global) defined in the downloaded blocks may be read and (if applicable) written by Citect.

There is no support for variable arrays. They must be read as individual variables.

4.9.1 TEMPLATE

The address of the variable is multiplied by 256 to avoid Citect blocking. Blocking is made internally by ExoScan.

The address is always the variable name used in the blocks loaded into the I/O Device. Ex points in StdObj.DPE or PIFA.DPE etc may be used. The address must be entered using the format

R2:Pifa.Visare1

Where

R
Datatype in the Exomatic system. R stands for REAL (could also be L for DIGITAL, X for BYTE, I for INTEGER or T for STRING).
Variables that will be associated with an alarm tag is defined using A for the digital alarm state (INACTIVE or ACTIVE), Q for the long UTC of the last state change and X for the byte that holds the Exomatic alarm status. All three types must be defined using the same key.

2
Key. The key must be unique for all individual variables used in the associated I/O device. It does not need to be system unique. The keys are used by the driver to determine the fully address (which follows the ‘:’) from its internal list of all variables defined that are associated to this driver in the project and all its includes. The key is an unsigned short (ranges from 0-65535). The key is automatically created by ExoTag that ensures that it will be unique.
The key number is multiplied by 256 to turn off Citect blocking and is provided by Citect to the driver as the DCB point address.

:
Delimiter

Pifa.Visare1
The fully variable address, i.e. Vpac.Variable etc.

When the driver is loaded, it scans through the user directories to find the include projects and all variables belonging to this driver and loads it into the memory. This way the driver uses the key, which is provided in the DCB, to gain access to the variable names.

4.9.2 UNIT_TYPE

The unit types are used to differ between normal variable requests and other types.

4.9.3 RAW_TYPE, BIT_WIDTH

The driver support the Exomatic variable types described above. Type casting is not supported, i.e. if the user tries to use another type that specified, the driver will most likely respond with a ‘Database size too big’ error.

4.9.4 LOW, HIGH

Is limited by the key type, which is unsigned short, i.e. 0-65535.

4.9.5 COMMENT

The comment row hold some info about the different unit types.

5. User Interface

5.1 Introduction

This section defines how the user will see the driver. This relates directly to how the Citect forms need to be filled out and any special INI options. For the kernel, the debug trace messages and the Stats.Special counters are documented.

5.2 Driver Name

EXOCIT

5.3 Boards Form

Only one board of this type may be set up for each I/O Server.

5.3.1 Board Type

EXOCIT

5.3.2 Address

0

5.4 Ports Form

5.4.1 Baud Rate

None

5.4.2 Data Bits

None

5.4.3 Stop Bits

None

5.4.4 Parity

None

5.4.5 Special Opt

None

5.5 IO Devices Form

5.5.1 Protocol

EXOCIT

5.5.2 Address

The address field should be the EXOapt module name, i.e.

ccm

etc.

The name field should hold the same name as the address field. It is not necessary, but if not, it will make ExoTag to not recognising the I/O device and cause the keys to be out of order if tags are added.

5.6 Pulldown lists Help

The following entries should be included in the Citect Help.DBF spec file.

	TYPE
	DATA
	FILTER

	BOARDTYPE
	EXOCIT
	

	PROTOCOL
	EXOCIT
	

5.7 IO Device Data Types and Formats

	IO Device Data Type
	Valid Range
	Citect Data Type
	Description

	R
	3.4E +/- 38
	REAL
	 7 digits

	X
	0-255
	BYTE
	

	I
	-32768 - +32767
	INT
	

	L
	0 - 1
	DIGITAL
	

	T
	
	STRING
	

	A
	0 - 1
	DIGITAL
	Alarm state, INACITVE/ACTIVE

	Q
	-2147483648 - +2147483647
	LONG
	Last alarm event time in UTC (seconds since 1/1-1970)

5.8 IO Device Function Blocks and their Parameters (EXOCIT.DBF)

	TEMPLATE
	UNIT_TYPE
	RAW_TYPE
	BIT_WITH
	LOW
	HIGH
	COMMENT

	L%U%*256:%!
	0x00000001
	0
	1
	0
	65535
	Vpac variable of type Digital (0/1)

	X%U%*256:%!
	0x00000001
	8
	8
	0
	65535
	Vpac variable of type Unsigned Integer (0-255)

	I%U%*256:%!
	0x00000001
	1
	16
	0
	65535
	Vpac variable of type Signed Integer (-32768/+32767)

	R%U%*256:%!
	0x00000001
	2
	32
	0
	65535
	Vpac variable of type Float

	T%U%*256:%!
	0x00000001
	7
	1024
	0
	65535
	Vpac variable of type Text

	A%U%*256:%!
	0x00010000
	0
	1
	0
	65535
	Alarm State

	Q%U%*256:%!
	0x00020000
	4
	32
	0
	65535
	Alarm Time

	ACK
	0x00080000
	7
	1024
	0
	0
	Acknowledge of an alarm in Citect should cause a write to this variable with the alarm tag name. The alarm tag name should consist of the module name and the key to the associated variable tag. I.e. ccm:42 etc. This tag should be defined at the ccm for the system and it needs to be defined only once. It should be named Exo_AlarmAck.

	DISABLE
	0x00080010
	7
	1024
	0
	0
	Disable of an alarm in Citect should cause a write to this variable with the alarm tag name. The alarm tag name should consist of the module name and the key to the associated variable tag. I.e. ccm:42 etc. This tag should be defined at the ccm for the system and it needs to be defined only once. It should be named Exo_AlarmDisable

	ENABLE
	0x00080011
	7
	1024
	0
	0
	Enable of an alarm in Citect should cause a write to this variable with the alarm tag name. The alarm tag name should consist of the module name and the key to the associated variable tag. I.e. ccm:42 etc. This tag should be defined at the ccm for the system and it needs to be defined only once. It should be named Exo_AlarmEnable.

	COMERR
	0x00200000
	1
	16
	0
	1
	Last known communication error for the associated I/O device.

	CONNECT
	0x00210000
	0
	1
	0
	1
	Is set to 1 to force a dial out to be performed for the associated I/O device. Set to 0 to force a hang up.

	CONNECTSTATUS
	0x00220000
	1
	16
	0
	1
	Connect status for the associated I/O device.

5.9 PROTDIR.DBF

	TAG
	FILE
	BIT_BLOCK
	MAX_LENGTH
	OPTIONS

	EXOCIT
	EXOCIT
	16
	256
	0x0cf

5.10 Parameters and INI options

5.10.1 Standard Parameters

Block
256
(Citect blocking is always prohibited)

Delay
50 ms

MaxPending
40

Polltime
0 ms
(interrupt driven)

Timeout
20000 ms

Retry
3
(not used)

WatchTime
30 s

5.10.2 Driver Specific Parameters

All ExoCit specific parameters are located in the section [ExoCit]
	PARAMETER
	DEFAULT
	DESCRIPTION

	AlarmCleanupTime
	1000 (ms)
	The time interval the driver do house keeping of the alarm processes, i.e. scans for alarm acknowledged to be sent to Citect.

	AlarmCiCodeInterval
	5000 (ms)
	The time that elapses between two alarm acknowledge tries. Before the driver begins the alarm acknowledge process of an alarm, it ensures that Citect has read it.

	AlarmCiCodeTries
	4
	The number of tries that maximum should be done. If the driver succeeds in the first attempt, it will not try again. If this is set to 0, no alarm acknowledges will be sent to Citect and the ctAPI calls will not be used.

	Computer
	
	Name of the computer where the alarm server is running. This should not be given if it is run locally (which is recommended).

	User
	
	User name if the Computer name is given.

	PassWord
	
	Password for the user name if is given.

	AlarmFilePath
	(run path)
	The path where the driver stores the alarm state file.

	AutoConnect
	0
	Set to 1 to cause the driver to automatically initiate a dial out when Citect asks for a variable belonging to a dial out device.

	ConnectTimeout
	20000 (ms)
	The timeout the driver use to determine when to hang up a dial out connection.

	TraceToLogFile
	0
	If set to 1, it will cause the driver to write all Kernel Debug info into a file named C:\EXO_port.LOG, where port is the Port Name. The reason is that Citect Kernel will not aquire all messages due to low buffers.
This function does not check disk space and will consume considerable space if used !

	AlarmEventDelay
	5000 (ms)
	When Citect has read a new alarm state, the driver will trigger an Alarm Event Timer. When the timer expires, it will return the next queued alarm event. The delay is needed if using redundant servers or if alarm values are presented in any picture.

	AckAlways
	0
	If set to 1, it will cause the driver to try to do ack in the Citect Alarm list even if the ack was initiated using Citect. In some cases (slow system) acks may be ‘lost’. The default behaviour is that the driver ignores next incoming ack from the PLC if an ack was sent from Citect.

	ForcedCheckAddress
	
	If running TCP/IP (or a dial in/out system) this parameter may be set to force the driver to initially or periodically write 1 to the ForcedCheck variable in the CCP block in the CCM. This will cause a dial out. If not set, the CCM will not poll for inactive or acked alarm events, only active events will trig a ‘dial in’.
Ex.ccm.ccp. forcedcheck.

	ForcedCheckInterval
	0 (sec)
	If set to –1 it will cause the driver to write 1 to the ForcedCheckAddress once att startup time. If set to another value it will do the write cyclic using the value as a inteval (seconds).

	ShutDownDelay
	0 (ms)
	Delay that should be issued before the driver tries to shut the Exo DLLs down, this may solve ExoCiPmp hang problem.

	TraceAlarmEventsOnly
	0
	If set to 1, it will cause the driver to trace alarm events only (both logfile and syslog)

	IgnoreStartupErrors
	0
	If set to 1, it will cause the driver to not reporting double defined tag index’s. If the COM-project contains variables is included at the bottom of the project tree the driver will try to add same variables more than once. Be careful not to use same index for these variables as other variables in the same device.

	MatchZeroOnly
	1
	If set to 1, the driver will only scan trend tags with the trigger set to 0 at startup time. The driver locates the associated variable tag before it can parse incoming logger data, because the variable name (address) is used to lookup the trend tag name. If this parameter is set to 0, the driver will try to do a lookup for all defined trend tags and in a big system that have different I/O device types (not only Exomatic) this will cause unecessary overhead at startup time.

	LoggerInterval
	10000 (ms)
	The interval with which the logger thread tries to locate and parse the ExoCit.Lg0 file. This is only done if ExoCit.Log does not exist.

If this parameter is set to 0 then the thread won’t parse ExoCit.Lg0. This file is an ASCII-file and fairly easy to read.

	LoggerFilePath
	(AltRunPath) or (run path)
	The path where the logger data is temporarily stored.

	TimeZoneAdjust
	1 (hour)
	The ExoTrendRead() CiCode adjusts automatically for UTC. The logger data from the devices are adjusted to match the local time zone. This parameter tells how much (in hours) to compensate. By default it is set to CET.

	DayLight
	-1
	DayLight = 0 – Standard time is in effect. DayLight > 0 – Daylight savings is in effect. DayLight = -1 – Dayligth savngs is determined by computer settings.

	BackupLogFiles
	0
	If set to 1, the log files will be backed up before they are converted and imported into Citect. They will be named ExoCit_YYMMDD_HHMMSS.LG0 and ExoCit_YYMMDD_HHMMSS.LOG.

	msAlarmTime
	0
	Determines if the time stamped alarm time should be returned in UTC (HresType=4) or in ms from dayshift (HresType=7). Defaults to 0 (UTC).

	AltUserPath
	(run path)
	Alternative path where ExoCit finds the Master.DBF file.

	AltRunPath
	(run path)
	Alternative path for the run path (where to find Include.DBF).

	LookupAlarmUsingTagName
	0
	If set to, it will cause the driver to do a lookup of the alarm tag using the alarm tag name in the alarm object list, rather than parsing the string which is sent to the ACK variable. This is not as efficient as the normal lookup, but allows any name to be entered as alarm tag name. They must however be unique, though the driver stops scanning through the alarm object list when it has found a match.

5.11 Driver Specific Errors

	
Driver Error Code
	Mapped to

(Generic Error label)
	Meaning of Error Code

	
	
	

	
	
	

	
	
	

5.12
Driver Error Help

The following entries should be included in the Citect ProtErr.DBF spec file.

	PROTOCOL
	MASK
	ERROR
	MESSAGE
	REFERENCE
	ACTION
	COMMENT

	
	
	
	
	
	
	

5.13 Debug Messages

Shows the outgoing/incoming data packets in hex. If error report level is set to ERROR the driver will report errors, i.e. if any erroneous packets are received.

5.14 Stats Special Counters

	Number
	Label
	Purpose/Meaning of this counter

	0
	CiCode runs
	The total number of CiCode alarm acknowledge tries.

	1
	Response time
	Response time for the last read from ExoCitEx (could be the a cached value).

	2
	Com Errors
	Number of encuntered communication errors (busy etc).

	3
	Max response time
	The maximum response time when reading variables.

	4
	Outstanding DCB’s
	The number of DCB waiting to be returned

	5
	OK reads
	Number of returned requests that was successfully handled

	6
	OK writes
	Number of reads that did not succeed

	7
	Bad writes
	Number of writes that did not succeed

	8
	n/a
	

	9
	n/a
	

	10
	n/a
	

	11
	n/a
	

	12
	n/a
	

	13
	n/a
	

	14
	n/a
	

	15
	n/a
	

	16
	n/a
	

	17
	n/a
	

	18
	n/a
	

	19
	n/a
	

5.15 Hints and Tips

Though this driver does not do the actual data streaming of the port(s) the packets can’t be debugged, but the debug function in Kernel will show the variable reads and all alarm events.

The response time for each package and its number of loops in the Request() function is given.

Care must be taken that the Comp01 directory is located in your projects home directory. It must be configured properly using the ScanTool program.

If running without CCM (directly using RS-232) then the CCP must be inactivated in the ScanTool program.

The ExoApt system is sensitive to bad directory pointers in Exomatic.INI, i.e. project and computer must be properly selected.

The driver scans Variable.DBF and Trend.DBF in the Run projects and all its include projects. The parsed addresses is then used to gain access to data and trend variables. Care must be taken to ensure that these databases always reflect the compiled project that is running.
The ExoApt internal cache timeout can be changed by the [ExoCitEx]AdviseTO parameter located in Exomatic.INI. It should not be necessary to change this for small ExoLine projects. It should be set to at least 20% more than the slowest updating picture. Defaults to 2400 ms.

When running TCP/IP using CCM some points are to be considered:

1. Don’t set up any router lines in the CCM for modules that are not connected or out of order. Due to intenal functions in VirtH in the CCM the communication will be very slow to all other modules (even if not asking for values to the not connected module).

2. The ForcedCheckAddress and ForcedCheckInterval must be used. If not set, the modules will not report alarms until an event is getting activated. However, normal communication will take place even if no alarms are reported.

6. Basic Testing

6.1 Introduction

The programmer will perform a minimum level of testing, which is outlined here.

A sample Project is available which can be used as a starting point for the programmers test Project. When the programmer has completed basic testing and debugging this Project should by backed up and supplied to the Citect Testing department.

6.2 Procedure

The following are points should be covered by basic testing.

· On startup the IO Device comes online without errors.

- OK

· The driver supports IO Devices of addresses as documented in the specification.

- OK

· The driver reports the IO Device offline when the IO Device is a) powered down, b) disconnected.

- OK (when variables are read)

· The driver will re-establish communication with the IO Device after a) power cycle, b) disconnection/reconnection.

- OK.

· Confirm that retries (if supported) and error reporting operate correctly.

- n/a

· The driver reads all the device data types documented as readable in this specification.

- OK

· The driver writes to all the device data types documented as writeable in this specification.

- OK

· The driver reads and writes all data formats supported by the protocol.

- OK

· Test the limit of the IO Devices request size, this should be done for at least DIGITAL and an INT data formats.

- n/a.

· Let the driver run over night and check that no retries or other errors have occurred.

- OK

· If a multidrop or network protocol and if the hardware is available then the protocol should be tested with more than one IO Device connected.

- OK

7. Performance Testing

7.1 Introduction

Tests which give some indication of the drivers performance. The programmer needs to perform these tests since the results feed back into the Constants structure and the PROTDIR.DBF.

7.2 Calculating the Blocking Constant – Not applicable

Because this driver is of the ‘Front-End-Back-End’ type, and due to the nature of the EXOCIT protocol, it does not support Citect blocking.References

7.3 References

The ExoFlex documentation is available for download at http://www.exomatic.se.

Autic System AB
Region South - HQ
Region East
Region West
Region North

Address
Box 81, Mariebergsgatan
Box 95, V.Trädgårdsg.39
Theres Svenssons g 10
Sågverksvägen 50

Postaladdress
S-261 22 Landskrona
S-611 23 Nyköping
S-417 55 Göteborg
S-865 31 Alnö

Phone
+46(0)418-471160
+46(0)155-214990
+46(0)31-555740
+46(0)60-538055

Telefax
+46(0)418-471161
+46(0)155-269966
+46(0)31-555547
+46(0)60-538056
exocit_full.doc

3

[image: image5.png]_1055543229.doc

 RS-232

ExoFlex

 RS-485 (or TCP/IP)

ExoFlex (pipe)

_1077087971

_1010071531.bin

