
Import alarms from WinCC to Nimbus
WinCC can export alarms to Nimbus using two different methods:

1) Using a text file created by a global C-script
2) Using a separate application (WinCC2Nimbus) developed using the Siemens ODK. It will connect

to the WinCC messaging service

Wich method to choose depends of the application. It is always easier to configure and debug
method 1, but it has the drawback that you have to edit a property for each alarm (check a checkbox)
which is important to remember if you add new alarms in the future.

Both methods are described in this document.

Method 1: Configure WinCC to create the Nimbus readable
alarm event text file
Find the file C:\Program Files (x86)\Siemens\WinCC\aplib\Alarm\gmsgfunc.fct. Change its name to
gmsgfunc.org. Where the file resides depends of the WinCC and OS version.

Copy the file gmsgfunc.fct from the Nimbus media found in the folder ..\Tools and
documents\WinCC. The file may also be found in the WinCC2Nimbus package at
www.automatisera.nu.

The script is also provided in .txt-format if you like to cut and paste the script. fct-files cannot be
opened using a text editor, ex Notepad. The script is also included in this document later on.

Open WinCC Explorer.

Go to Global Script -> C-Editor -> Standard functions -> Alarm

Open GMsgFunction

Edit the row with the path and filename if needed. It will by default point to the Nimbus version 3
project folder. The folder is created when Nimbus is installed. You can choose any folder you like as
long as both Nimbus and WinCC have security settings allowing the applications to create and delete
files in that folder.

If the original gmsgfunc.fct already is used for something, you must manually edit the script.

Select File -> Close. Compile if suggested by WinCC.

Select Tools -> Regenerate Header.

Close the Script editor.

Open Alarm Logging

You have to change a parameter for each alarm to be sent to Nimbus. Right click and select
Properties.

Check Triggers an action. This will cause WinCC to activate the script.

If you are using PCS7 and CFC then the check box is found in there. The settings are copied from
PCS7/CFC at compile/download, hence overwriting the above settings.

Start WinCC runtime and try to set an alarm, the textfile should be created.

Method 1: Configure Nimbus to import the alarm event text
file
Run Nimbus Explorer (right click and select Run as Administrator) using its shortcut. Nimbus Explorer
shall always be run as Administrator.

Select Setup -> SCADA Import Setup.

Select SCADA System -> Add SCADA System Import -> Siemens WinCC

Select alarm.txt in the same folder used in the script. If the file does not exist, just select Open.
Ensure the File path to scan also included the textfile name.

When you run Nimbus Alarm Server, the program will remove the textfile because it contains just old
alarm events. Create a new alarm in WinCC. It should now appear in Nimbus Explorer. Nimbus always
remove the file when it has been read.

Metod 1: gmsgfunc.fct
//
// Date / Vers / Sign / Comment
// --
// 16.02.26 / 1.0.0.0 / TR / Major changes
// 16.02.27 / 1.0.0.1 / TR / Added priority and Class moved to Area
// 16.03.18 / 1.0.0.2 / TR / Added Text block 2
//
//
//
//
//
// --

#include "msrtapi.h";

BOOL GMsgFunction(char* pszMsgData)
{

 extern char g_Msg[];

 MSG_RTDATA_STRUCT mRT;
 PCMN_ERROR pError;
 DWORD dwID = 0;
 CMN_ERROR Error;
 MSG_CSDATA_STRUCT MsgData;
 MSG_CLASS_STRUCT MsgClass;
 MSG_TEXT_STRUCT mtsClass;

 MSG_TEXT_STRUCT mtsBlock1;
 MSG_TEXT_STRUCT mtsBlock2;
 MSG_TEXT_STRUCT mtsBlock3;

 char lpszMsgState[256];

 char date[20];
 char time[20];
 char errcode[20] = "\r\n";
 long lPriority = 0;

 FILE *pfExport;
 pError=&Error;

 memset (&mRT, 0, sizeof(MSG_RTDATA_STRUCT));
 memset (&MsgData, 0, sizeof(MSG_CSDATA_STRUCT));
 memset (&MsgClass, 0, sizeof(MSG_CLASS_STRUCT));

 if (pszMsgData != NULL)
 {
 //Read messagedata
 sscanf(pszMsgData, "%ld,%ld,%04d.%02d.%02d,%02d:%02d:%02d:%03d,%ld, %ld, %ld",
 &mRT.dwMsgNr, //Messagenr
 &mRT.dwMsgState, //Status MSG_STATE_COME, .._GO, .._QUIT, .._QUIT_SYSTEM
 &mRT.stMsgTime.wYear, //Day
 &mRT.stMsgTime.wMonth, //Month
 &mRT.stMsgTime.wDay, //Year
 &mRT.stMsgTime.wHour, //Hour
 &mRT.stMsgTime.wMinute, //Minute
 &mRT.stMsgTime.wSecond, //Second
 &mRT.stMsgTime.wMilliseconds, //Millisecond
 &mRT.dwTimeDiff, //Zeitdauer der anstehenden Meldung
 &mRT.dwCounter, //Interner Meldungszähler
 &mRT.dwFlags); //Flags(intern)

 // create message-string and filename if state == COME
 if (mRT.dwMsgState == MSG_STATE_COME ||
 mRT.dwMsgState == MSG_STATE_GO ||
 mRT.dwMsgState == MSG_STATE_QUIT)
 {

 // Open file, this file must be located somewhere where we have read/write/delete
 // access rights
 pfExport =
 fopen("C:\\ProgramData\\TroSoft\\Nimbus Alarm Server 3\\Project\\alarm.txt","a");

 if (pfExport != NULL)
 {

 sprintf (date,"%04d-%02d-%02d",
 mRT.stMsgTime.wYear,
 mRT.stMsgTime.wMonth,
 mRT.stMsgTime.wDay);
 sprintf (time,"%02d:%02d:%02d",
 mRT.stMsgTime.wHour,
 mRT.stMsgTime.wMinute,
 mRT.stMsgTime.wSecond);

 if (MSRTStartMsgService(&dwID, NULL, NULL, 0, NULL, pError))
 {

 MSRTGetMsgCSData (mRT.dwMsgNr, &MsgData, pError);
 // These are the Texts as they appear in the Text-tab in alarm logging,
 // block 1 -> dwTextID[0] etc
 MSRTGetMsgText (0, MsgData.dwTextID[0], &mtsBlock1, pError);
 MSRTGetMsgText (0, MsgData.dwTextID[1], &mtsBlock2, pError);
 MSRTGetMsgText (0, MsgData.dwTextID[2], &mtsBlock3, pError);
 MSRTGetClassInfo (mRT.dwMsgNr, &MsgClass, pError);
 MSRTGetMsgText (0,MsgClass.dwName, &mtsClass, pError);
 MSRTGetMsgPriority (MsgData.dwMsgNr, (long*)&lPriority, pError);

 fprintf(pfExport,"%s#", date);
 fprintf(pfExport,"%s#", time);
 fprintf(pfExport,"%s#", mtsBlock1.szText);

 // This text is the only cruical text for Nimbus
 switch (mRT.dwMsgState)
 {
 case MSG_STATE_COME:
 fprintf(pfExport,"%s","Aktivt");
 break;
 case MSG_STATE_GO:
 fprintf(pfExport,"%s","Avgått");

 break;
 case MSG_STATE_QUIT:
 fprintf(pfExport,"%s","Kvitterat");
 break;
 }
 fprintf(pfExport,"#");

 fprintf(pfExport,"%ld#", lPriority);
 fprintf(pfExport,"%s#", mtsClass.szText);

 // You may add any texts you wish but Nimbus will only import them if you
 // select them in the file found in
 // Nimbus Project folder ..\Project\Import\Import_WinCC.imp
 fprintf(pfExport,"%s#", mtsBlock3.szText);

 fprintf(pfExport,"\n");

 MSRTStopMsgService(dwID, pError);

 } // MSRTStartMsgService

 //Close and save File
 fclose(pfExport);

 } // pfExport != NULL

 } // mRT.dwMsgState

 } // pszMsgData != NULL

 return TRUE;

}

Method 2: Configurera WinCC to export alarm events using
WinCC2Nimbus
Install the WinCC2Nimbus application, it will be found in the media folder ..\Tools and
documents\WinCC. It can also be found at www.automatisera.nu.

WinCC2Nimbus may be run as a normal Windows application or as a service. If run as a normal
Windows application it should always be run as Administrator.

To add the application as service, run WinCC2Nimbus using the -i command line parameter

Example:

"C:\Pogram Files (x86)\WinCC2Nimbus\WinCC2Nimbus.exe" -i

Obs! For the installation to succeed properly, it is very important this command is executed in an
elevated CMD-prompt (run as Administrator).

Remove from services using the command line parameter -u. Ensure the service first has been
stopped.

First time the service has to be manually started using the Service Control Manager. The service will
automatically start when the the computer is rebooted. To ensure WinCC has started before
WinCC2Nimbus during reboot, set the service Startup Type to Automatic (Delayed start).

To ensure everything works ok, run the application as a normal Windows application before installing
as a service. Alarm events are shown in the WinCC2Nimbus window. The program will also create a
LogFiles subfolder in its installation folder, where all events will be stored in logfiles (textfiles). The
logfiles will automatically be deleted when they are older than 90 days (default setting)

WinCC2Nimbus may also create events and send to Nimbus when it is started and stopped or when
WinCC is started and stopped. This functionality is configured in WinCC2Nimbus.ini located in the
installation folder. Each event type has its own section, ex to create an alarm event when WinCC is
stopped, edit the [NimbusMessageWhenWinCCIsStopped] section:

 EventType=1

T0=WinCC
T1=
T2=99
T3=
T4=WinCC2 has stopped

EventType sets the event type as follows: 0 = Inactive (normal), 1 = Active (Alarm), 2 = Acknowledge

If EventType is set to 1 as above, WinCC2Nimbus will create an alarm and send to Nimbus when
WinCC is stopped. All fields, T0 (Tag) to T4 (Description) may be set to any text. This enables the
possibility to create route profiles matching this alarm or use any existing route profile.

Tip: Processes (ex the WinCC-services) may be monitored using Nimbus. Use the Watchdog
functionality in Nimbus, it will be found in Nimbus Explorer -> Setup -> Server setup -> Watchdog

WinCC2Nimbus will subscribe to all alarm events in WinCC and send them to Nimbus Alarm Server
using one of two different variants:

a) Queing the alarm events directly in the internal Nimbus Alarm Server event queue

b) using a TCP-connection (Generic TCP)

Variant A is default and does not require any SCADA import in Nimbus, however it requires that both
Nimbus Alarm Server and WinCC are installed in the same server.

If using variant A, run WinCC and Nimbus Alarm Server and create an alarm in WinCC. It should show
up both in WinCC2Nimbus and Nimbus Explorer.

Method 2 - variant B: Configure WinCC2Nimbus for TCP
Variant B is suitable if Nimbus Alarm Server is installed in a different server. To enable TCP the
parameter ConnectionType in WinCC2Nimbus.ini needs to be changed from 0 to 1.

WinCC2Nimbus will by default listen at TCP port 14000. The port number may be changed using the
PortNumber parameter.

Restart WinCC2Nimbus for the changes in WinCC2Nimbus.ini to take effect.

Obs! Ensure the computer firewalls allow this traffic. WinCC2Nimbus act as a TCP socket server and
Nimbus Alarm Server act as a TCP socket client.

Metod 2 - variant B: Configure Nimbus connection to
WinCC2Nimbus using TCP
Run Nimbus Explorer (right click and select Run as Administrator) using its shortcut. Nimbus Explorer
shall always be run as Administrator.

Select Setup -> SCADA Import Setup.

Select SCADA System -> Add SCADA system import -> Generic TCP (Client)

Select adress and port to the WinCC-server. Nimbus Alarm Server act as a socket client.

Run WinCC and Nimbus Alarm Server, create an alarm. It should show up both in WinCC2Nimbus and
Nimbus Explorer.

